Analisis Siesmic Desain Batu Bata Antisipatif Gempa (ATG)

Authors

  • Marwahyudi . Universitas Sahid Surakarta, Indonesia

Keywords:

Desain Batu Bata, Daerah Lekat, Push Over

Abstract

Gempa bumi mengakibatkan beberapa kerusakan. Kerusakan terjadi pada bagian atap, dinding, plafond. Kerusakan segera diselesaikan agar tidak menambah korban jiwa. Kerusakan pada dinding diantisipasi dengan perkuatan. Kekuatan dinding dipengaruhi oleh kekuatan kuat ikat antar batu bata, plaster dan aci. Penelitian ini fokus pada desain batu bata yang mampu meningkatkan kekuatan. Desain batu bata yang ditawarkan adalah desain batu bata Antisipatif Gempa (ATG). Penelitian desain batu bata ini dimulai tahun 2015 sampai 2018 menggunakan dana DIKTI. Analisis penelitian mengunakan software aplikasi dengan metode push over. Metode ini dilakukan untuk kedua kelompok benda uji, Kelompok pertama sebagai pembanding dengan desain batu bata normal. Kelompok kedua adalah batu bata ATG sebagai penelitian. Metode ini untuk mengetahi kekuatan batu bata ATG dalam saat menerima gempa. Batu bata ATG meningkatkan daerah lekat sehingga lebih baik dalam menahan gaya gempa dibanding batu bata normal. Pengunaan batu bata ATG pada bangunan rumah tinggal diaharapkan akan mengurangi kerusakan yang timbul akibat gempa bumi.

References

[1] S. Frapanti and J. Tarigan, “Analisa Portal Yang Memperhitungkan Kekakuan dinding Batu Bata dari Berbagai Negara,” 2017.
[2] C. Khairul Lakum, “Pemanfaatan Abu Sekam Padi Sebagai Campuran Untuk Peningkatan Kekuatan Beton,” 2009.
[3] H. Prayuda, “Gaya Lateral In-Plane Struktur Portal Dinding Pasangan Bata ½ Batu Melalui Analisis Numerik,” vol. 18, no. 2, pp. 130–139, 2015.
[4] M. Marwahyudi, “Typologi Kerusakan Masonry Infilled Frame,” Modul. Media Komun. Dunia Ilmu Sipil, vol. 1, no. 1, p. 11, 2019, doi: 10.32585/modulus.v1i1.376.
[5] M. Tomaževič, “Shear resistance of masonry walls and Eurocode 6: Shear versus tensile strength of masonry,” Mater. Struct. Constr., vol. 42, no. 7, pp.
889–907, 2009, doi: 10.1617/s11527-008-9430-6.
[6] [6] S. Farooquddin, “LATERAL STIFFNESS OF INFILLED FRAME WITH DOOR & WINDOW OPENINGS FOR VARYING MODULUS OF,” pp. 7–9, 2000.
[7] L. Binda, Learning from Failure Long-term Behaviour of Heavy Masonry Structures. 2008.
[8] G. . Mainstone, R.J., Weeks, “The influence of Bounding Frame on the Racking Stiffness and Strength of Brick Walls,” Proc. 2nd Int. Brick Mason. Conf.,
no. Figure 1, pp. 165–171, 1970, [Online]. Available:http://www.hms.civil.uminho.pt/ibmac/1970/165.pdf.
[9] Marwahyudi, “The Tensile Strength of Hooked Brick,” Int. J. Eng. Trends Technol., vol. 18, no. 7, pp. 323–327, 2014, [Online]. Available: http://ijettjournal.org/volume-18/number-7/IJETT-V18P266.pdf.
[10] M. Teguh, “Experimental Evaluation of Masonry Infill Walls of RC Frame Buildings Subjected to Cyclic Loads,” Procedia Eng., vol. 171, pp. 191– 200, 2017, doi: 10.1016/j.proeng.2017.01.326.
[11] B.S. Smith, “Lateral Stiffness of Infilled Frames,” J. Struct. Div., vol. 88,no. 6, pp. 183–226, 1962.
[12] Marwahyudi, “Civil Engineering Environmental and Disaster Risk Management Symposium ( CEE DRiMS 2020 ) Penguatan Riset dan Teknologi untuk Mewujudkan Infrastruktur yang Cerdas , Lestari , dan Tangguh,” 2020.
[13] H. A. Safarizki, L. I. Gunawan, and Marwahyudi, “Effectiveness of Glass Powder as a Partial Replacement of Sand in Concrete Mixtures,” J. Phys. Conf. Ser., vol. 1625, no. 1, 2020, doi: 10.1088/1742-6596/1625/1/012025.
[14] W. W. El-Dakhakhni, M. Elgaaly, and A. A. Hamid, “Three-Strut Model for Concrete Masonry-Infilled Steel Frames,” J. Struct. Eng., vol. 129, no. 2, pp.
177–185, Feb. 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:2(177).
[15] O. Bolea, “The Seismic Behaviour of Reinforced Concrete Frame Structures with Infill Masonry in the Bucharest Area,” Energy Procedia, vol. 85,
no. November 2015, pp. 60–76, 2016, doi: 10.1016/j.egypro.2015.12.275.
[16] L. Cavaleri and F. Di Trapani, “Prediction of the additional shear action on frame members due to infills,” Bull. Earthq. Eng., vol. 13, no. 5, pp. 1425–
1454, 2015, doi: 10.1007/s10518-014-9668-z.
[17] P. Joyklad and Q. Hussain, “Axial compressive response of grouted cement–clay interlocking hollow brick walls,” Asian J. Civ. Eng., vol. 20, no. 5,pp. 733–744, 2019, doi: 10.1007/s42107-019-00140-2.
[18] P. Seshu, Textbook of finite element analysis. 2005.
[19] ASTM, “Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, ASTM E519-02,” Annu. B. ASTM Stand., vol. 92, no. June, pp. 1– 5, 2005.
[20] P. Foytong, M. Boonpichetvong, N. Areemit, and J. Teerawong, “Effect of Brick Types on Compressive Strength of Masonry Prisms,” no. February
2017, 2016, doi: 10.14716/ijtech.v7i7.4640.
[21] S. Frapanti and J. Tarigan, “Analisa Portal Yang Memperhitungkan Kekakuan dinding Batu Bata dari Berbagai Negara,” 2017.
[22] C. Khairul Lakum, “Pemanfaatan Abu Sekam Padi Sebagai Campuran Untuk Peningkatan Kekuatan Beton,” 2009.
[23] H. Prayuda, “Gaya Lateral In-Plane Struktur Portal Dinding Pasangan Bata ½ Batu Melalui Analisis Numerik,” vol. 18, no. 2, pp. 130–139, 2015.
[24] M. Marwahyudi, “Typologi Kerusakan Masonry Infilled Frame,” Modul. Media Komun. Dunia Ilmu Sipil, vol. 1, no. 1, p. 11, 2019, doi: 10.32585/modulus.v1i1.376.
[25] M. Tomaževič, “Shear resistance of masonry walls and Eurocode 6: Shear versus tensile strength of masonry,” Mater. Struct. Constr., vol. 42, no. 7, pp.
889–907, 2009, doi: 10.1617/s11527-008-9430-6.
[26] S. Farooquddin, “LATERAL STIFFNESS OF INFILLED FRAME WITH DOOR & WINDOW OPENINGS FOR VARYING MODULUS OF,” pp. 7–9, 2000.
[27] L. Binda, Learning from Failure Long-term Behaviour of Heavy Masonry Structures. 2008.
[28] G. . Mainstone, R.J., Weeks, “The influence of Bounding Frame on the Racking Stiffness and Strength of Brick Walls,” Proc. 2nd Int. Brick Mason. Conf.,
no. Figure 1, pp. 165–171, 1970, [Online]. Available: http://www.hms.civil.uminho.pt/ibmac/1970/165.pdf.
[29] Marwahyudi, “The Tensile Strength of Hooked Brick,” Int. J. Eng. Trends Technol., vol. 18, no. 7, pp. 323–327, 2014, [Online]. Available:
http://ijettjournal.org/volume-18/number-7/IJETT-V18P266.pdf.
[30] M. Teguh, “Experimental Evaluation of Masonry Infill Walls of RC Frame Buildings Subjected to Cyclic Loads,” Procedia Eng., vol. 171, pp. 191– 200, 2017, doi: 10.1016/j.proeng.2017.01.326.
[31] B.S. Smith, “Lateral Stiffness of Infilled Frames,” J. Struct. Div., vol. 88, no. 6, pp. 183–226, 1962.
[32] Marwahyudi, “Civil Engineering Environmental and Disaster Risk Management Symposium ( CEE DRiMS 2020 ) Penguatan Riset dan Teknologi
untuk Mewujudkan Infrastruktur yang Cerdas , Lestari , dan Tangguh,” 2020.
[33] H. A. Safarizki, L. I. Gunawan, and Marwahyudi, “Effectiveness of Glass Powder as a Partial Replacement of Sand in Concrete Mixtures,” J. Phys. Conf.
Ser., vol. 1625, no. 1, 2020, doi: 10.1088/1742-6596/1625/1/012025.
[34] W. W. El-Dakhakhni, M. Elgaaly, and A. A. Hamid, “Three-Strut Model for Concrete Masonry-Infilled Steel Frames,” J. Struct. Eng., vol. 129, no. 2, pp.
177–185, Feb. 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:2(177).
[35] O. Bolea, “The Seismic Behaviour of Reinforced Concrete Frame Structures with Infill Masonry in the Bucharest Area,” Energy Procedia, vol. 85,
no. November 2015, pp. 60–76, 2016, doi: 10.1016/j.egypro.2015.12.275.
[36] L. Cavaleri and F. Di Trapani, “Prediction of the additional shear action on frame members due to infills,” Bull. Earthq. Eng., vol. 13, no. 5, pp. 1425– 1454, 2015, doi: 10.1007/s10518-014-9668-z.
[37] P. Joyklad and Q. Hussain, “Axial compressive response of grouted cement–clay interlocking hollow brick walls,” Asian J. Civ. Eng., vol. 20, no. 5,
pp. 733–744, 2019, doi: 10.1007/s42107-019-00140-2.
[38] P. Seshu, Textbook of finite element analysis. 2005.
[39] ASTM, “Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, ASTM E519-02,” Annu. B. ASTM Stand., vol. 92, no. June, pp. 1–5, 2005.
[40] P. Foytong, M. Boonpichetvong, N. Areemit, and J. Teerawong, “Effect of Brick Types on Compressive Strength of Masonry Prisms,” no. February 2017, 2016, doi: 10.14716/ijtech.v7i7.4640.

Downloads

Published

2021-11-26

Citation Check