Analisis Performa Website Pada Implementasi MERN Stack Dengan MySQL Dalam Pengembangan HairHub

Authors

  • Danang Rifai Universitas Sahid Surakarta, Indonesia
  • Sri Huning Anwariningsih
  • Astri Charolina

Keywords:

HairHub, Refactoring, Barbershop, Salon

Abstract

HairHub is an information center website for barbershop and salon owners and users.
Based on observations, there is a problem related to the length of time the page loads.
This study aims to analyze and improve the performance of the HairHub website which
is implemented using MERN Stack (MongoDB, Express.js, React.js, Node.js) with
MySQL as a database. This study focuses on analyzing the loading speed of website
pages using two main performance analysis tools, namely Google PageSpeed Insights
and GTmetrix. The evaluation results show that optimization contributes significant
improvements in various aspects, namely the performance score in Google PageSpeed
Insights increased from an average of 75 to almost 100, while in GTmetrix it increased
from an average of 65 to almost 80. Refactoring the program code contributes to an
increase in the structure score in GTmetrix from 73-78 to 91-92. Accessibility score on
Google Page Speed Insights increased from 86 to 95, and best practice score from 89
to 96. However, the SEO score remained stable at 83. This study shows that
optimization successfully improved HairHub website performance and quality with
faster page load time and easier navigation.

Downloads

Download data is not yet available.

References

Andriansyah, D. (2019). Performance dan stress testing dalam mengoptimasi website. Computer Based Information System Journal, 7(1), 23–28.

Huda, N., & Megawaty, M. (2021). Analisis Kinerja Website Dinas Komunikasi dan Informatika Menggunakan Metode Pieces. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 10(2), 155–161.

Husnul, N. R. I., Prasetya, E. R., Ajimat, A., & Purnomo, L. I. (2020). Statistik Deskriptif. Universitas Pamulang: Banten.

Keuning, H., Heeren, B., & Jeuring, J. (2021). A tutoring system to learn code refactoring. Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 562–568.

Kurniawan, M. A. (2023). Analisis Performa website Unipem menggunakan GTMetrix dan Google PageSpeed Insight. Insan Pembangunan Sistem Informasi Dan Komputer (IPSIKOM), 11(1), 42–46.

Nugraha, A., Gunawan, R. D., & Ariany, F. (2023). Perancangan Sistem Marketplace Penyedia Jasa Pangkas Rambut Berbasis Website Menggunakan Mern Stack. Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 2(2), 75–84.

Panduwika, P., & Solehatin, S. (2024). Performance measurement implementation on the smart fisheries village website using pagespeed insight. Journal of Soft Computing Exploration, 5(2).

Suliman, S. (2020). Analisis performa website universitas teuku umar dan universitas samudera menggunakan pingdom tools dan gtmetrix. Jurnal Sistem Informasi Dan Sistem Komputer, 5(1), 24–32.

Suprapto, A., & Sasongko, D. (2021). Studi Empiris Evaluasi Performa Website IAIN Salatiga Menggunakan Automated Software Testing. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 5(1), 209–218.

Tengriano, H. A., & Yunus, A. (2022). Analisis Performa Website AyoMulai Menggunakan GTMetrix dan Page Speed Insights. KHARISMA Tech, 17(2), 199–213.

Wangsa, F. J. (2023). Optimasi Website Toko Kerja Menggunakan Uji Performa Google Pagespeed Insights. KHARISMA Tech, 18(2), 41–54.

Downloads

Published

2024-08-09

Citation Check